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* Depends on plate
tectonics through
geologic history

* Big environmental
changes through
geologic time

« Seas in, seas out

« Warm periods and
iIce ages




Arizonal Physiographic: Proyvinces

Colorado Plateau Province
% canyons
% horizontal sediments
% broad warping

Transition or Central
Highlands Province

% lots of faulting
% mostly mountains
% rugged terrain (high relief)

Basin & Range Province
% fault block mountains

% broad alluvial valleys

% sand, clay, salt & gravel -
fill up to 10,000 feet thick
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PreGambriant Arizona

Inner Gorge -
metamorphic
rocks
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Moun’ram bmldmg eplsode in younger' PreCambrian (older Proterozoic)
- 1.7 billion years - Mazatzal Orogeny produced Rocky Mt.-style mountains
*  Metamorphism, folding, later intrusion of granitic rocks
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untains (4,000’ offset)

< 1.1 billion years ago - Fault block mo
< about 10,000 ft thick
<+ Eroded away to a nearly flat surface before the deposition of the Tapeats
Sandstone 500 million years ago.



< Photosgnthesis by blue green algae
(cyanobacteria) since 3.5 billion yrs ago

< When pigments developed in cells,
they could absorb and process light.

< The products of this process were
energy and oxygen.

< Between 2.4 - 2.2 billion years ago,
the greater numbers of cyanobacteria
increased production of oxygen.

< By 1.8-1.6 Ga, O, rose from 1% to
15%.

ame . = Stromatolites deposited layers of
. ' ' calcium carbonate in layers.
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Figure 13-2 Typical Cambrian trilobites. A. Olenellus.
B. Holmia. C. Lejopyge. D. Paradoxides. E. Glyptagnostus.

F. Illaenurus. Trilobites were arthropods (invertebrate animals
with segmented bodies and jointed legs). The soft body and the
many legs were positioned beneath the flexible, jointed
skeleton. Trilobites had mouthparts for chewing small pieces of
food. Most species crawled over the seafloor, but some
burrowed in sediment, and a few small species, including
Lejopyge and Glyptagnostus, were planktonic. (Scale bars
represent | centimeter [ inchl.) (After R. C. Moore, ed., Treatise
on Invertebrate Paleontology, pt. O, Geological Society of America
and University of Kansas Press, Lawrence, 1959.)
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Upper Ordovician sediment patterns for North America.Widely scattered patches of sediments on the Canadian Shield

Figure I1.15
prove the great extent of the Late Ordovician sea.Absence of Ordovician strata on several arches proves subsequent warping and erosion of
these arches. Note the spread of red beds and marine shales westward from the Appalachian region, forming a clastic wedge. (See Box 10.2 for

symbols and sources.)
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A

Bryozoans

Crinoids

Burrowing

! b_ivalve

Figure 13-11
Ordovician invertebrate
fossils. A. A straight-shelled
nautiloid about 15
centimeters (6 inches) long.
B. A spiny trilobite that lived
on the sediment surface.

C. A smooth-shelled
burrowing trilobite.

D. A snail (gastropod). E and
F. Two kinds of articulate
brachiopods. G. A bivalve
mollusk that lived on the
sediment surface.

H. A branched bryozoan
colony. I. A tabulate coral
colony. J. A stromatoporoid
colony. K. A rugose coral.
(Courtesy Smithsonian
Institution, photo by

Chip Clark.)
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FIGURE 9-4 Paleography of North America during the Devonian Period.
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FIGURE 10-62 The gigantic armored skull and
thoracic shield of the formidable late Devonian
placoderm fish known as Dunkleosteus. Dunkleosteus
was over 10 meters (about 30 feet) long. The skull shown
here is about 1 meter tall. It is equipped with large bony
cutting plates that functioned as teeth. Each eye socket
was protected by a ring of four plates, and a special joint
at the rear of the skull permitted the head to be raised,
thereby making an extra large bite possible. Dunkleosteus
ruled the seas 350 million years ago. (Courtesy of the U.S.
National Museum of Natural History, Smithsonian
Institution; photograph by Chip Clark.)

FIGURE 10-60 Early Paleozoic
ostracoderms. (A) Thelodus, (B)
Preraspis, (C) Jamoytius, and (D)
Hemicyclaspis, drawn to the same scale.

FIGURE 10-61 The Early Devonian acanthodian fish FIGURE 10-63 'The Devonian antiarch fish Pterichthyodes.
Climatius. (After Romer, A. S. 1945. Vertebrate (From Romer, A. S. 1945. Vertebrate Paleontology. Chicago:
Paleontology. Chicago: University of Chicago Press.) University of Chicago Press, p. 54, fig. 38.)




Figure I12. 11 Artists conception of the Late Devonian landscape.Tall seed fern and lycopsid trees are conspicuous, but most plants were
low-growing psilophytes, lycopsids, sphenopsids, and ferns that clustered close to the water’s edge. Against this backdrop, early land arthropods
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FIGURE 10-76 The skeleton of Ichthyostega still retains the fishlike form of its
crossopterygian ancestors. (From Levin, H. L. 1975. Life Through Time. Dubuque, Iowa:
William C. Brown Co.)

270 milk
Oklahoma
U647

FIGURE 10-77  Cacops, a small labyrinthodontic
amphibian from the Lower Permian. (Photograph of a
ecimen on exhibit at the Field Museum in Chicago.)







FIGURE 10-88 Calamites, a sphenopsid. Plants shown
are about 3 to 5 meters tall.

Extinction overtook many plant groups near the end
of the Permian Period. Many species of lycopsids, seed
ferns, and conifers disappeared. Small ferns that grow
in damp areas, however, were not profoundly affected
by the crisis.

FIGURE 10-89 Annularia, an abundant sphenopsid of
Pennsylvania age.

Mass Extinctions € 375

FIGURE 10-90 Pecopteris, a true fern from the
Pennsylvanian of Illinois (the penny is for scale).

FIGURE 10-91 End of a branch of Cordaites, showing
the straplike leaves of these trees. Not uncommonly, the
leaves attained lengths of 1 meter. The clustered bodies
produced the plant’s male gametes. (Adapted |

Grand’Eury, C. 1877. Flore Carbonifere de Départment de la
Loire et du centre de la France. Mem. Acad. Sci. Institut
France. 24:624 pp.)

MASS EXTINCTIONS

For most of the Paleozoic, the Earth was populated by
a rich diversity of life. There were, however, times
when the planet was less hospitable, and large groups
of organisms suffered extinction (Fig. 10-92). Early
geologists saw evidence of these mass extinctions in the
fossil record and used the abrupt termination of fossil
ranges to define the boundaries between geologic




Formation. (Photog

FIGURE 9-12 Part of an Illinois cyclothem. The
lowermost layer is the coal seam (cyclothem bed 5),
followed upward by shale (bed 6) near the geologist’s hand,
limestone (bed 7), shale (bed 8), another limestone (bed 9),
and the upper shale (bed 10). Part of another sequence caps
the exposure. This cyclothem is part of the Carbondale

aph courtesy of D. L. Reinertsen and the
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FIGURE 9-11 An ideal coal-bearing cyclothem,
showing the typical sequence of layers. Many
cyclothems do not contain all 10 units, as in this illustration
of an idealized sequence. Some units may not have been
deposited because changes from marine to nonmarine
conditions may have been abrupt and/or units may have
been removed by erosion following marine regressions.
The number 8 bed usually represents maximum inundation

and, correlated with the same bed elsewhere, provides an
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FIGURE 9-18 Generalized paleogeographic map for the Permian Period.
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FIGURE 10-80 Mammal-like reptiles.
The scene depicts three carnivorous forms
(Cynognathus) about to attack a plant-eating
therapsid reptile (Kannemeyeria). (Courtesy of

FIGURE 10-78 Permian reptiles. The prominent
sailback reptile in the left foreground, with a larger skull
and daggerlike teeth, is the carnivore Dimetrodon. The
sailbacks with smaller heads and blunt cheek teeth, in the
foreground at right and in the distance, are plant-eaters of
the genus Edaphosaurus. (Copyright 7. Sibbick.) K Is it likel




FIGURE 11-1 Paleogeographic reconstruction of the world about 180 million years
ago, when the break-up of Pangea was beginning. (After Scotese, C. R. and McKerrow,
W.S. 1990. Paleogeography and Biogeography, Geol. Soc. London Mem. 12:1-21.)




P
60°N | - /\\/ / ///
s /,

170°W

Shallow, shaly
deposition

160°W [

150°W [
50°N |

// ‘»[
: Possible”
140°W | approaching
displaced

40°N |lerranes |

e ‘spueiMoTl

spa? ped

“Oll,lsodep [eiAn

30°N [/
130°W

20°N |— /

TRIASSIC PALEOGEOGRAPHY
|: Mostly shallow marine

l:j Mostly deep marine

I :l Lowlands being eroded

| Mountainous areas

| 20°W

60°N
30°W

40°W

50°N
50°W

40°N

60°W

30°N

- 20°N

10°N

A Volcanoes  Scale 1:25,000,000

Gray areas provide 0 500 1000
Pt S o]
no data e

70°W

FIGURE 11-3 Generalized paleogeographic map for the Triassic of North America.

E What was the cause of the faulting along the eastern margin of the continent?
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FIGURE 12-21 The small, agile
theopod Coelophysis lived about
220 million years ago, during
the Late Triassic. Coelophysis was
about 3 meters in length. These
fast, agile, bipedal predators may
have pursued their prey in packs,
and there is evidence that they
occasionally even ate juveniles of
their own species. (Copyright

FIGURE 12-17 Rutiodon, a Triassic phytosaur. Like many other phytosaurs, Rutiodon grew o .
to lengths of 10 or more feet. (IWustration by Carlyn Tverson.) B What living reptile is an example Hesperosuchus from the driassic of the southwestern United States,
of convergent evolution with Rutiodon?







Cratonic Sequences -
Geologic Time : OErogemc Biologic Events Alce
Center of craton Margin of craton VERLs ges
W
: . Himalayan
CENOZOIC Tejas Alpine Age of mammals
% Laramide - Massive extinctions
: : First flowering plants

Cretaceous Zuni SEA Climax dinosaurs and
® ——\\, o o ammonites
8 \\ First birds
o Jurassic Abundant dinosaurs
% | and ammonites

(s1eaA jo suol|jiN) oby

Temperatul

Cold

N =

@) 0

@)

Pleistocene

210Z0S8N

210Z09jed

210Z0i8uBYd

0102018]01d




60°N

70°N

170°W [

160°W

40°W

150°W v
500 | Displaced”
terranes
converging ] 50°N
on North 50°W
America
140°W [
40°N [
5 /
“;/\\ 40°N
i)
/ 3
/ 3
hia 60°W
30°N L =
130°W [ T~ _{ 30°N
20°N | J | 20°N

JURASSIC PALEOGEOGRAPHY

[:\ Mostly shallow marine
E: Mostly deep marine

Ej Lowlands being eroded

L [:) Mountainous areas

A\ Volcanoes  Scale 1:25,000,000

Gray areas provide 0 500 1000
| el I

no data

km

FIGURE 11-7 Generalized paleogeographic map for the Jurassic of North America.
M Describe the conditions at the site of your school during the Jurassic Period.
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FIGURE 11-26 Paleogeographic map for the early
Jurassic of the western United States, showing general
extent of sea and land as well as paleolatitudes. (From
Stanley, K. O., Jordan, W. M., and Dott, R. H. 1971. Bull.
Am. Assoc. Petrol. Geol. 55(1):13.)
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TABLE 8-1 Cratonic Sequences of North America*
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FIGURE 13-20 Vertical aerial photograph of a large
cinder cone in the San Francisco volcanic field of
northern Arizona. The solidified flow issuing from the
cone is 7 kilometers long and more than 30 meters thick.
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FIGURE 13-36 Areal
coverage of continental
glaciers in North America
during the latest glacial
advance, about 18,000
years ago. (Courtesy of
Thompson, G.R. and Turkl, 7.
1997, Modern Physical
Geology, Philadelphia:
Saunders College Publishing.)



Figure 14.40 The abundance of carbon
dioxide in Earth’s atmosphere has declined
dramatically during the last 100 million
years. Loss of this important greenhouse
gas may have allowed Earth to cool enough
for glaciers to accumulate.
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Figure 16.16 Late Pleistocene standard marine paleo-
temperature curve (left) based upon oxygen-isotope analyses of
calcium carbonate in microfossil shells from deep-sea cores of three
oceans. Magnetic polarity measurements on the same cores (right) and
limited isotopic dating of cores provide a time scale. Note that, for the
last 600,000 years, cold intervals had a periodicity of about 100,000
years; from then back to about |.4 million years, the period was about
40,000 years (J—Jaramillo brief normal polarity event). (Adapted from
Emiliani and Shackleton, | 974: Science, v. 183, pp. 51 1-514; and
Shackleton and Opdyke, 1976: Geological Society of America Memoir
145, pp. 449—464.)
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TABLE 13-2 Classic Nomenclature for Glacial

and Interglacial Stages of the

Pleistocene Epoch

NORTH ALPINE YEARS BEFORE
AMERICA REGION PRESENT

—10,000
WISCONSIN | Wiirm

—75,000
Sangamon Riss-Wiirm

—1235,000
ILLINOIAN Riss

— 265,000
Yarmouth Mindel-Riss

—300,000
KANSAN Mindel

—435,000
Aftonian Gunz-Mindel

—500,000
NEBRASKAN | Giinz

—1,800,000
Pre- L
Nebraskan G
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FIGURE 13-43 Curve reflecting variations in the global volume of ice (and, indirectly,
paleotemperatures) during the past 500,000 years. Data are from radiometric dating and
isotope measurements of cores from the Indian Ocean. (Data from Hays, 7. D., and Shackleton,
N. J. 1976. Science 194:1121-1132.)
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Figure 14.38 A record of climatic
change during the last 160,000 years was
assembled from studies of ice cores from
Greenland’s glacier. It shows that the nor-
mal pattern of change involves numerous
rapid fluctuations in temperature—not
only during glacial periods, but throughout
interglacial periods as well. The stable
warm temperature of the present inter-
glacial period is distinctly abnormal.
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Figure 20-10 Cold intervals of the past 5500 years Mountains of California. (Data from V. C. La Marche, in H. H.
recorded by widths of annual growth rings in Lamb, Climate History and the Modern World, Routledge, London,
bristlecone pines near the upper tree line of the White 1995.)
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